The thermal change in the hypothalamus, the thermoregulatory center, of the experimental animals has been usually measured by use of a thermocouple or a needleformed thermistor inserted through the skull and the brain parenchyma. However, these procedures may be unsuitable for a longterm, observation of the body temperature because the insertion of the thermodes causes considerably widespread damage of the brain tissues, particularly the hypothalamus. Recording the intracardiac, rectal and muscular temperatures of the rabbit by means of the thermistor equipped on the apex of the venous catheter or of the metal-needle, Yasuda (1-3) of this laboratory has reported the influence of various pyrogenic substances on the temperature. Using the same technique, Takashima (4) has compared the effects of pyrogenic substances in the intact and the liver-damaged rabbits. There exist some reports on the tympanic membrane temperature. Benzinger (5) has chosen the tympanic membrane of a human for the measurement of internal body temperature as close as feasible to the hypothalamic heat center. He has introduced 36-gauge twin wires of copper and constantan into the external auditory canal and has placed the thermoelectric junction of the wires at the tympanic membrane. But little work has been done to study the correlation between the brain temperature and the tympanic membrane temperature. The present experiments have been designed to determine whether the tympanic membrane temperature changes in parallel with the hypothalamic temperature or not. In these experiments a decline of the tympanic membrane and brain temperatures was produced by cooling the common carotid arteries or by the administration of some hypothermic agents. An elevation of the temperature was produced by the carotid warming or by the administration of pyrogenic substances. Moreover, the influences of the carotid cooling and warming on behaviors, respiration, blood pressure and heart rate were studied.
Read full abstract