ABSTRACTEnergy piles are commonly deployed in vertically layered geological conditions due to the geological structure and pile foundation backfill. The imperfect contact between adjacent soil layers results in resistance to heat transfer at the interface, known as the interfacial thermal resistance effect. In this paper, the energy pile was simplified as a finite‐length solid cylindrical heat source, and an analytical model was established for layered heat transfer of energy piles considering the interfacial thermal resistance effect. The Laplace‐domain solutions to the temperatures in the layered ground were derived by using the finite Hankel and Laplace transforms. The Crump method was subsequently employed to numerically invert Laplace‐domain solutions to the time‐domain solutions. The proposed model was validated by comparing with an analytical solution of a homogeneous model and COMSOL numerical solution. These solutions were used to analyze the temperature response around energy piles considering interfacial thermal resistance. Finally, a parametric study was performed to explore the effects of interfacial thermal resistance and other thermal properties of the soil layer on the layered heat transfer of energy piles.
Read full abstract