A theoretical model was developed for time-resolved thermal mirror spectroscopy under top-hat cw laser excitation that induced a nanoscale surface displacement of a low absorption sample. An additional phase shift to the electrical field of a TEM(00) probe beam reflected from the surface displacement was derived, and Fresnel diffraction theory was used to calculate the propagation of the probe beam. With the theory, optical and thermal properties of three glasses were measured, and found to be consistent with literature values. With a top-hat excitation, an experimental apparatus was developed for either a single thermal mirror or a single thermal lens measurement. Furthermore, the apparatus was used for concurrent measurements of thermal mirror and thermal lens. More physical properties could be measured using the concurrent measurements.
Read full abstract