Wave propagation in elastic dielectrics with flexoelectricity, micro-inertia and strain gradient elasticity is investigated in this paper. Dispersion phenomenon, which does not exist in classical elastic dielectric theory, is observed in the flexoelectric microstructured solids. Analytical solutions for the phase velocity \(C_{p}\), group velocity \(C_{g}\) and their ratio \(\gamma = C_{g} / C_{p}\) are calculated for the case of harmonic decomposition. The magnitudes of the phase velocity and group velocity changed with the increasing of the wave number, while they are constant in the classical elastic dielectric theory. It is shown that the flexoelectricity, micro-inertia and microstructural effects are significant to predict the real behavior of longitudinal wave propagating in flexoelectric microstructured solids. Microstructural effects are not sufficient for dealing with realistic dispersion curves in flexoelectric solids, the micro-inertia and flexoelectricity are needed to obtain a physically acceptable value of the phase and group velocities.
Read full abstract