AbstractIncreased greenhouse gas emissions are causing unprecedented climate change, which is, in turn, altering emissions and removals (referring to the oxidation of atmospheric CH4 by methanotrophs within the soil) of the atmospheric CH4 in terrestrial ecosystems. In the global CH4 budget, wetlands are the dominant natural source and upland soils are the primary biological sink. However, it is unclear whether and how the soil CH4 exchanges across terrestrial ecosystems and the atmosphere will be affected by warming and changes in precipitation patterns. Here, we synthesize 762 observations of in situ soil CH4 flux data based on the chamber method from the past three decades related to temperature and precipitation changes across major terrestrial ecosystems worldwide. Our meta‐analysis reveals that warming (average warming of +2°C) promotes upland soil CH4 uptake and wetland soil CH4 emission. Decreased precipitation (ranging from −100% to −7% of local mean annual precipitation) stimulates upland soil CH4 uptake. Increased precipitation (ranging from +4% to +94% of local mean annual precipitation) accelerates the upland soil CH4 emission. By 2100, under the shared socioeconomic pathway with a high radiative forcing level (SSP585), CH4 emissions from global terrestrial ecosystems will increase by 22.8 ± 3.6 Tg CH4 yr−1 as an additional CH4 source, which may be mainly attributed to the increase in precipitation over 30°N latitudes. Our meta‐analysis strongly suggests that future climate change would weaken the natural buffering ability of terrestrial ecosystems on CH4 fluxes and thus contributes to a positive feedback spiral.
Read full abstract