In this article, we propose considering an approximate exact score (AES) test for noninferiority comparisons and we derive its test-based confidence interval for the difference between two independent binomial proportions. This test was published in the literature, but not its associated confidence interval. The p-value for this test is obtained by using exact binomial probabilities with the nuisance parameter being replaced by its restricted maximum likelihood estimate. Calculated type I errors revealed that the AES method has important advantages for noninferiority comparisons over popular asymptotic methods for adequately powered confirmatory clinical trials, at 80% or 90% statistical power. For unbalanced sample sizes of the compared groups, type I errors for the asymptotic score method were shown to be higher than the nominal level in a systematic pattern over a range of true proportions, but the AES method did not suffer from such a problem. On average, the true type I error of the AES method was closer to the nominal level than all considered methods in the empirical comparisons. In rare cases, type I errors of the AES test exceeded the nominal level, but only by a small amount. Presented examples showed that the AES method can be more attractive in practice than practical exact methods. In addition, p-value and confidence interval of the AES method can be obtained in <30 s of computer time for most confirmatory trials. Theoretical arguments, combined with empirical evidence and fast computation time should make the AES method attractive in statistical practice.
Read full abstract