Abstract Forest restoration and improved forest management are seen as options to enhance terrestrial carbon dioxide removal in many regions, yet concerns surrounding their potentially adverse surface albedo impacts exist, particularly in high latitude and altitude regions. Such concerns are often based on generalized conclusions rooted in analyses carried out over broad spatial extents at coarse resolutions. The impacts of surface albedo change are highly sensitive to local environmental factors governing both the surface albedo and solar radiation budgets, and many previous assessments either do not sufficiently deal with such sensitivities or do not qualify the conditions under which they are relevant. Using the country of Norway with its diverse gradients in topography and climate as an ideal case study region, we seek clarity to the question of whether surface albedo is relevant to consider in forestry planning, and if so, what are the important factors determining it. We find that the adverse impact of a forest’s albedo outweighs its carbon cycle benefit on only ∼4% of Norway’s total forested area, reducing to <∼1% when future climate changes are considered. Our findings challenge the common perception that surface albedo concerns are highly relevant to forestry planning at high latitudes and emphasize the importance of carrying out albedo impact assessments at spatial scales aligning with those of local forestry planning.
Read full abstract