AbstractThe mechanisms of the OH‐initiated oxidation of methyl vinyl ketone and methacrolein have been studied at 300 K and 100 Torr total pressure, using a turbulent flow technique coupled with laser‐induced fluorescence detection of the OH radical. The rate constants for the OH + methyl vinyl ketone and OH + methacrolein reactions were measured to be (1.78 ± 0.08) × 10−11 and (3.22 ± 0.10) × 10−11 cm3 molecule−1 s−1, respectively, and were found to be in excellent agreement with previous studies. In the presence of O2 and NO, the OH radical propagation and the loss of OH through radical termination resulting from the production of methyl vinyl ketone‐ and methacrolein‐based alkyl nitrates were measured at 100 Torr total pressure and compared to the simulations of the kinetics of these reaction systems. The results of these experiments are consistent with an overall rate constant of (2.0 ± 1.3) × 10−11 cm3 molecule−1 s−1 for both the methyl vinyl ketone‐based peroxy radical + NO and methacrolein‐based peroxy radical + NO reactions, each with branching ratios of 0.90 ± 0.10 for the bimolecular channel (oxidation of NO to NO2) and 0.10 ± 0.10 for the termolecular channel (production of methyl vinyl ketone‐ and methacrolein‐based alkyl nitrates). © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 12–25, 2003
Read full abstract