The ark shell, Scapharca subcrenata, is susceptible to high temperature which may lead to mass mortality in hot summers. Herein, we conducted the transcriptomic analyses of haemocytes in ark shells under thermal stress, to reveal the underlying molecular mechanisms of heat resistance in these animals. The results showed that a total of 7773, 11,500 and 13,046 unigenes were expressed differentially at 12, 24 and 48 h post thermal stress, respectively. The expression levels of key DEGs as revealed by RNA-seq were confirmed by quantitative real-time PCR. GO and KEGG enrichment analyses showed that the DEGs were mainly associated with apoptosis, NF-kappa B signaling pathway, TNF signaling pathway and RIG-I-like receptor signaling pathway. Among the DEGs, 40 were candidate heat stress response-related genes and 169 were identified to be involved in antioxidant defense, cell detoxification, protein metabolism and endoplasmic reticulum stress responses. It seemed that ark shells may adapt to short term thermal stress through regulation of protein metabolism, DNA replication and anti-apoptotic system. However, if the stress sustains, it may cause irreparable injury gradually in the animals due to oxygen limitation and metabolic dysregulation. Noteworthily, the expression of DEGs involved in protein biosynthesis and proteolysis was significantly elevated in ark shells under heat stress. These findings may provide preliminary insights into the molecular response of ark shells to acute thermal stress and lay the groundwork for marker-assisted selection of heat-resistant strains in S. subcrenata.
Read full abstract