We study the effect of quantum decoherence on the inflationary cosmological perturbations. This process might imprint specific observational signatures revealing the quantum nature of the inflationary mechanism being related to the longstanding issue of the quantum-to-classical transition of inflationary fluctuations. Several works have investigated the effect of quantum decoherence on the statistical properties of primordial fluctuations. In particular, it has been shown that cosmic decoherence leads to corrections to the curvature power spectrum predicted by standard slow-roll inflation. Equally interesting, a non zero curvature trispectrum has been shown to be purely induced by cosmic decoherence but, surprisingly, decoherence seems not to generate any bispectrum. We further develop such an analysis by adopting a generalized form of the pointer observable, showing that decoherence does induce a non vanishing curvature bispectrum and providing a specific underlying concrete physical process. Present constraints on primordial bispectra allow to put an upper bound on the strength of the environment-system interaction. In full generality, the decoherence-induced bispectrum can be scale dependent provided one imposes the corresponding correction to the power spectrum to be scale independent. Such scale dependence on the largest cosmological scales might represent a distinctive imprint of the quantum decoherence process taking place during inflation. We also provide a criterion that allows to understand when cosmic decoherence induces scale independent corrections, independently of the type of environment considered. As a final result, we study the effect of cosmic decoherence on tensor perturbations and we derive the decoherence corrected tensor-to-scalar perturbation ratio. In specific cases, decoherence induces a blue tilted correction to the standard tensor power spectrum.
Read full abstract