The authors show the formation of slow temporal vector optical solitons in a cold lifetime-broadened four-level inverted-Y atomic system. We demonstrate that Maxwell's equations for describing two orthogonally polarised components of a low intensity signal field can evolve into two coupled nonlinear Schrodinger equations, which results in various distortion-free temporal vector optical solitons, such as bright-bright or dark-dark vector solitons. These results are produced from the correct balance between dispersion, self- and cross-phase modulation (SPM and XPM) effects. We also show that the integrable Manakov model can be realised by adjusting the corresponding SPM, XPM and dispersion effects of this inverted-Y atomic system.
Read full abstract