We report a metal coordination-driven sol-gel transition system where cellulose nanofibrils are enveloped by a rationally designed metal-organic membrane (MOM) in an aqueous medium. Specifically, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized bacterial cellulose (TOBC) is encapsulated within an MOM comprising Zn2+ and the chelator phytic acid (PA), denoted TOBCMOM. Using the DLVO theory, we elucidate how tuning the metal ion valence in TOBCMOM modulates the sol-gel transition by controlling interfibrillar attractive forces. Notably, TOBCMOM fluids exhibit relaxation times consistent with the Kohlrausch-Williams-Watts (KWW) function. Significantly, we demonstrate reversible, sustainable sol-gel transitions in TOBCMOM under stepwise mechanical strain. This facile approach enables rheological tailoring of aqueous media, promising for the development of advanced stimuli-responsive smart fluids for applications in cosmetics, food science, and pharmaceutical formulations.
Read full abstract