The Zhegu area in southern Tibet is situated in the central and eastern part of the Tethys Himalayan tectonic belt, with the Kangbuzhenri area being abundant in gneissic granites. This study examines the petrology, chronology, and geochemistry of the Kangbuzhenri gneissic granite, providing insights into its Pan-African and Early Paleozoic geological evolution. The zircon U-Pb chronology indicates an upper intercept age of ~539 Ma, reflecting Pan-African orogenic events in the eastern part of the Tethys Himalayan tectonic belt, and a lower intercept age of ~144 Ma, representing a late tectonic–thermal event. Geochemically, the gneissic granites are calc-alkaline peraluminous rocks with high SiO2 and Al2O3 contents and low TiO2, P2O5, MgO, and FeOT contents. The gneissic granites are enriched in LREE and LILEs (Rb, Pb, Th, U, etc.), but relatively depleted in HREE and HFSEs (Nb, Ti, P, etc.). Most of them show a weak negative δEu anomaly, except for two samples which show a significant negative δEu anomaly due to the crystallization of plagioclase. Based on the above study, most of the gneissic granites exhibited the characteristics of an I-type granite, while two of the samples were a highly differentiated I-type granite with S-type affinities. All the above characteristics indicate that the gneissic granite likely originated from the partial melting of crustal materials and sediments with a minor involvement of mantle-derived materials. Combined with the previous chronological studies, the Kangbuzhenri gneissic granites were formed in an extensional tectonic environment during post-collision orogeny and then they were influenced by the Kerguelen mantle plume tectonic–thermal event around ~144 Ma and the subsequent Southern Tibet Detachment System (STDS).
Read full abstract