Platinum (Pt) metallenes, an emerging class of ultrathin 2D nanomaterials, have redefined the field of electrocatalysis, offering physicochemical properties that are completely new to conventional catalyst materials. Characterized by their high surface-to-volume ratios, abundant active sites, and tunable electronic structures, Pt metallenes exhibit remarkable efficiencies across key reactions in fuel cells and electrolyzers, including the oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), and liquid fuel oxidation reaction (LFOR). Overcoming the inherent limitations of rigid Pt-Pt bonds and the face-centered cubic structure, recent advances in synthesis, such as bottom-up methods and top-down exfoliation, have enabled precise control over the atomic thickness, morphology, and composition of 2D Pt metallenes. In addition, advanced engineering strategies, such as defect creation, ligand modulation, and strain optimization, have further enhanced the intrinsic activity of the active sites and tailored the electronic structures to accelerate reaction kinetics. This review provides a comprehensive analysis of the latest progress in Pt metallene research, emphasizing challenges in synthesis, structural design, and electrocatalytic applications. It is anticipated that the Pt metallenes, promising catalysts for sustainable energy technologies, will offer transformative solutions for efficient energy conversion and environmental remediation.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
10038 Articles
Published in last 50 years
Articles published on Sustainable Technologies
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
8751 Search results
Sort by Recency