Combined with the Lossy Drude-Lorentz dispersive model, a symplectic finite-difference time-domain (SFDTD) algorithm is proposed to deal with the double dispersive model. Based on matrix splitting, symplectic integrator propagator and the auxiliary differential equation (ADE) technique, with the rigorous and artful formula derivation, the algorithm is constructed, and detailed formulations are provided. Excellent agreement is achieved between the SFDTD-calculated and exact theoretical results when transmittance coefficient in simulation of double dispersive film in one dimension is calculated. As to numerical results for a more realistic structure in three dimensions, the simulation of periodic arrays of silver split-ring resonators using the Drude dispersion model are also included. The transmittance, reflectance, and absorptance of the structure are presented to test the efficiency of the proposed method. Our method can be used as an efficiency simulation tool for checking the experimental data.
Read full abstract