The induction of chirality on pristine fullerenes through non-covalent embedding in an asymmetric nano-confinement has only been rarely reported. Bringing molecules with such a unique electronic structure and broad application range into a chiral environment is particularly appealing for the development of chiroptical materials, enantioselective photoredox catalysts and systems showing chirality-induced spin selectivity (CISS). In this study, we report the formation of a chiral, configurationally stable Pd2L4capsule assembled from aC2-symmetric, 'ribbon-shaped' ligand with a Tröger's base naphthalimide (TbNaps) backbone, easily synthesized in three steps from commercially available compounds. Embedding chirality directly into the ligand backbone ensures a relatively lightweight receptor design whose aromatic panels create a strongly shielded inner cavity of about 700 Å3volume. Fullerenes C60and C70, as well as a pair of corannulenes, can be bound in acetonitrile (where unsubstituted fullerenes are insoluble) and X-ray structures of host-guest complexes were obtained. Tight interactions between the chiral host and the fullerene guests leads to the induction of a circular dichroism (CD) on the characteristic absorption bands of the forbidden π-π* transitions of the fullerenes, backed up by sTDA TD-DFT calculations and detailed investigation of the electronic excited states.
Read full abstract