The spatial scaling of biodiversity, such as the taxa-area relationship (TAR) and distance-decay relationship (DDR), is a typical ecological pattern that is followed by both microbes and macrobes in natural ecosystems. Previous studies focusing on microbes mainly aimed to address whether and how different types of microbial taxa differ in spatial scaling patterns, leaving the underlying mechanisms largely untouched. In this study, the spatial scaling of different microbial domains and their associated ecological processes in an intertidal zone were comparatively investigated. The significant spatial scaling of biodiversity could be observed across all microbial domains, including archaea, bacteria, fungi, and protists. Among them, archaea and fungi were found with much stronger DDR slopes than those observed in bacteria and protists. For both TAR and DDR, rare subcommunities were mainly responsible for the observed spatial scaling patterns, except for the DDR of protists and bacteria. This was also evidenced by extending the TAR and DDR diversity metrics to Hill numbers. Further statistical analyses demonstrated that different microbial domains were influenced by different environmental factors and harbored distinct local community assembly processes. Of these, drift was mainly responsible for the compositional variations of bacteria and protists. Archaea were shaped by strong homogeneous selection, whereas fungi were more affected by dispersal limitation. Such differing ecological processes resulted in the domain-level differentiation of microbial spatial scaling. This study links ecological processes with microbial spatial scaling and provides novel mechanistic insights into the diversity patterns of microbes that belong to different trophic levels. IMPORTANCE As the most diverse and numerous life form on Earth, microorganisms play indispensable roles in natural ecological processes. Revealing their diversity patterns across space and through time is of essential importance to better understand the underlying ecological mechanisms controlling the distribution and assembly of microbial communities. However, the diversity patterns and their underlying ecological mechanisms for different microbial domains and/or trophic levels require further exploration. In this study, the spatial scaling of different microbial domains and their associated ecological processes in a mudflat intertidal zone were investigated. The results showed different spatial scaling patterns for different microbial domains. Different ecological processes underlie the domain-level differentiation of microbial spatial scaling. This study links ecological processes with microbial spatial scaling to provide novel mechanistic insights into the diversity patterns of microorganisms that belong to different trophic levels.
Read full abstract