Due to the limited transmission gain of ubiquitous radar systems, it has become necessary to use a long-time coherent integration method for range-Doppler (RD) analysis. However, when the target exhibits high-speed and high-maneuver capabilities, it introduces challenges, such as range migration (RM), Doppler frequency migration (DFM), and velocity ambiguity (VA) in the RD domain, thus posing significant difficulties in target detection and tracking. Moreover, the presence of VA further complicates the problem. To address these complexities while maintaining integration efficiency, this study proposes a hybrid integration approach. First, methods called Keystone-transform (KT) and matched filtering processing (MFP) are proposed for compensating for range migration (RM) and velocity ambiguity (VA) in Radar Detection (RD) images. The KT approach is employed to compensate for RM, followed by the generation of matched filters with varying ambiguity numbers. Subsequently, MFP enables the production of multiple RD images covering different but contiguous Doppler frequency ranges. These RD images can be compiled into an extended RD (ERD) image that exhibits an expanded Doppler frequency range. Second, an improved particle-filter (IPF) algorithm is raised to perform incoherent integration among ERD images and to achieve track-before-detect (TBD) for a target. In the IPF, the target state vector is augmented with ambiguous numbers, which are estimated via maximum posterior probability estimation. Then, to compensate for the DFM, a line spread model (LSM) is proposed instead of the point spread model (PSM) used in traditional PF. To evaluate the efficacy of the proposed method, a radar simulator is devised, encompassing comprehensive radar signal processing. The findings demonstrate that the proposed approach achieves a harmonious equilibrium between integration efficiency and computational complexity when it comes to detecting and tracking high-speed and high-maneuvering targets with intricate maneuvers. Furthermore, the algorithm’s effectiveness is authenticated by exploiting ubiquitous radar data.
Read full abstract