For an International Linear Collider (ILC) undulator-based positron source target configuration, a strong optical matching device (OMD) field is needed inside the target to increase the positron yield (by more than 40%) [Y. K. Batygin, Proceedings of the 2005 ALCPG and ILC Workshops, Snowmas, CO, 14–27 August 2005 (unpublished)] It is also required that the positron target be constantly rotated to reduce thermal and radiation damages. Eddy currents, produced by an OMD field in turn, interact with the magnetic field and produce a drag (stopping) force. This force not only produces heat in the disk but also creates a dipole deflecting field, which affects the beam. Therefore it is important to simulate such a system in detail to design the motor and cooling system and also a correction magnet system. In order to guide the ILC target design, an exact simulation of the spinning disk in a magnetic field is required. In this paper we present a simulation method implemented using COMSOL and compare it with the experimental results recently obtained at Stanford Linear Accelerator Center and Lawrence Livermore National Laboratory. Good agreement between the simulation and the experiment gives confidence in the validity of the method. We give detailed results on the proposed ILC target system, such as parametric studies for reduction of the power required to keep the target spinning. We present simulation results of the induced deflection field and of the reduction of the OMD field effect.
Read full abstract