Melatonin is a pleiotropic signal molecule that plays critical roles in regulating plant growth and development, as well as providing physiological protections against various environmental stresses. Nonetheless, the mechanisms for melatonin-mediated pollen thermotolerance remain largely unknown. In this study, we report that irrigation treatment with melatonin (20 µM) effectively ameliorated high temperature-induced inactivation of pollen and inhibition of pollen germination in tomato (Solanum lycopersicum) plants. Melatonin alleviated reactive oxygen species production in tomato anthers under high temperature by the up-regulation of the transcription and activities of several antioxidant enzymes. Transmission electron micrograph results showed that high temperature-induced pollen abortion is associated with a premature degeneration of the tapetum cells and the formation of defective pollen grains with degenerated nuclei at the early uninuclear microspore stage, whilst melatonin protected degradation of organelles by enhancing the expression of heat shock protein genes to refold unfolded proteins and the expression of autophagy-related genes and formation of autophagosomes to degrade denatured proteins. These findings suggest a novel function of melatonin to protect pollen activity under high temperature and support the potential effects of melatonin on reproductive development of plants.
Read full abstract