Drought is a major factor limiting the growth of turfgrasses in many areas. The functional relationship of drought stress and accumulation of various ions in turfgrasses is not well understood. The objective of this study was to investigate the effects of drought on root growth and accumulation of several major nutrients in three tall fescue (Festuca arundinacea Schreb.) cultivars varying in drought tolerance (Falcon II = Houndog V > Rebel Jr). Grasses were grown in well-watered or drying (nonirrigated) soil for 35 days in a greenhouse. Drought conditions limited total root length to a greater extent for `Rebel Jr' than for `Falcon II' and `Houndog V', while specific root length (SRL) was greater in `Falcon II' and `Houndog V' than in `Rebel Jr'. Concentrations of N, P, and Mg decreased, whereas those of K, Ca, and Fe increased, in shoots of drought-stressed plants of all three cultivars. Root N was not affected, but root P decreased in `Rebel Jr', and root K decreased in all three cultivars under drought conditions. Drought reduced the proportions of N and P in shoots and increased those in roots, while increasing the proportion of K in shoots and decreasing that in roots. During drought stress, both `Falcon II' and `Houndog V' maintained higher K concentration in shoots, and `Falcon II' in roots, than did `Rebel Jr', but `Rebel Jr' and `Houndog V' had higher Fe concentration in shoots than did `Falcon II'. The higher K and lower Fe accumulations in shoots could contribute to better drought tolerance of tall fescue cultivars.
Read full abstract