Abstract. In high-speed ground racing cars, the aerodynamics of the tail wing are crucial as they directly affect the overall performance and results of the car. In the aerodynamic performance of the tail wing, down force and drag are the two most important parameters. In order to study the specific effects of factors such as racing speed, tail wing profile, and tail angle of attack on the aerodynamic performance of the tail wing, fluid dynamics numerical simulation methods were used for research.The research results indicate that within the parameter range of 160km/h to 240 km/h, both resistance and down force continuously increase with the increase of speed, and show a typical linear variation pattern. Within the range of 0 to 35 angle of attack, both drag and down force increase, but within 20 , the increase in down force is faster, and once it exceeds 20 , the increase in drag becomes more pronounced.At the same time, four different airfoil structures were compared and analyzed, and it was concluded that the NACA airfoil is more suitable for low-speed operating conditions, as it can generate higher down force at lower speeds. The research results of this article provide certain reference value for the design and finalization of racing tail fins.
Read full abstract