SEO Analyst pays a lot of time finding relevant tags for their articles and in some cases, they are unaware of the content topics. The current proposed ML model will recommend content-related tags so that the Content writers/SEO analyst will be having an overview regarding the content and minimizes their time spent on unknown articles. Machine Learning algorithms have a plethora of applications and the extent of their real-life implementations cannot be estimated. Using algorithms like One vs Rest (OVR), Long Short-Term Memory (LSTM), this study has analyzed how Machine Learning can be useful for tag suggestions for a topic. The training of the model with One vs Rest turned out to deliver more accurate results than others. This Study certainly answers how One vs Rest is used for tag suggestions that are needed to promote a website and further studies are required to suggest keywords required.
Read full abstract