This article presents the results of a pilot study on the treatment of sludge from a water treatment plant in the city of Almaty, Republic of Kazakhstan, to ensure further disposal. The main objective of the study was to compare the efficiency of sludge drying by natural and artificial methods. The qualitative characteristics of the leachate from the dewatering unit, the chemical composition of the dried sludge and the granulometric analysis of the dried sludge were also studied. The greatest reduction in moisture content was recorded for drying in natural conditions (2.1%), but this process required the longest drying time. The leachate obtained from sludge dewatering was characterized by significant contamination (e.g., turbidity—55.65 on average, color—67.7, total Fe—5.15 mg/L, total N—79.6 mg/L, COD—311 mg/L, BOD—336.15 mg/L), which indicates the need for its pretreatment before further management in the technological system of the treatment station. The content of chemical substances contained in the dry residue of the sludge was also determined, of which aluminum was 0.94–13.8 mg/kg, silicon was 50.24–146.3 mg/kg, potassium was 1.72–5.51. mg/kg, calcium was 71.8–79.1 mg/kg, iron was 2.0–7.54 mg/kg and nickel was 0.9–4.4 mg/kg. A particle size analysis of the dried sludge showed that the majority fractions were fine and very fine sand, with a total of 20.2%, and silt and clay, with a total of 78.3%. Such properties justify the rationality of considering the reuse of dried sludge as a raw material for making, for example, construction materials or soil remediation material.
Read full abstract