Rheumatoid arthritis (RA) is largely caused by the inflammatory response triggered by macrophage polarization. Through epigenetic reprogramming, the inflammatory state of macrophages can be modified. Macrophage polarization is associated with the RNA epigenetic alteration N6-methyladenosine (m6A) RNA methylation. However, the specific function and underlying mechanisms of m6A methylation in the role of macrophage polarization in RA remain to be elucidated. The mRNA expression levels of m6A methylase genes and signaling pathway components associated with RA macrophages were determined in the present study using reverse-transcription quantitative PCR. Methyltransferase 14 (METTL14) protein expression levels were determined using western blot analysis, and the levels of specific cellular secretion factors were determined using ELISA and flow cytometry. The results of the present study demonstrated that elevated METTL14 expression was associated with joint tenderness, and METTL14 expression was positively correlated with both C-reactive protein and rheumatoid factor expression levels. Moreover, METTL14 exhibited potential in the prediction of visual analogue scale. Pro-inflammatory cytokines (TNF-α) and M1 macrophage markers (CD68+CD86+) were also positively associated with METTL14 expression. The results of the Kyoto Encyclopedia of Genes and Genomes analysis revealed that METTL14 was strongly associated with the MAPK signaling pathway. Notably, JNK and ERK2 exhibited a positive correlation with the M1 macrophage marker, CD68+CD86+, which was positively associated with the pro-inflammatory factor, TNF-α. JNK and ERK2 expression levels were markedly increased in the METTL14 high-expression group, compared with in the low-expression group; however, p38 and ERK1 expression levels were not significantly different between these groups. Collectively, the results of the present study demonstrated that METTL14 expression was significantly increased in the peripheral blood and synovial tissue of patients with RA, highlighting the potential association with both immunoinflammatory markers and clinical symptoms. In addition, it was suggested that METTL14 may exacerbate the downstream inflammatory response, through mediating macrophage polarization via the MAPK pathway.
Read full abstract