Multiple research teams have documented various abnormalities in erythrocyte properties in children with autism spectrum disorder (ASD) compared with neurotypical individuals. Reduced erythrocyte deformability, a crucial factor for microcirculation and oxygen delivery, may affect brain function. Other key factors like nitric oxide (NO) and Na,K-ATPase-regulated cation transport also play roles in both erythrocyte deformability and ASD, suggesting a possible relationship between erythrocyte parameters and autism severity. Thus, this study aims to describe these associations, exploring erythrocyte properties as potential biomarkers in ASD. A total of 179 ASD children were enrolled in this study. Diagnosis was confirmed by the Autism Diagnostic Observation Schedule-Second Edition (ADOS-2) and Autism Diagnostic Interview-Revised. The Vineland Adaptive Behavior Scales, Third Edition (VABS-3), was used to assess adaptive behavior. RBC deformability was measured using a filtration technique, while NO production by RBCs was assessed via DAF-2DA fluorescence. Na,K-ATPase kinetics and RBC osmotic resistance were evaluated spectrophotometrically. Children with more severe ASD symptoms had more impaired deformability and osmotic resistance than children with mild symptoms. Higher RBC NO production was linked to better scores in some VABS-3 subdomains, and in the social affect domain of ADOS-2. Higher affinity of Na,K-ATPase for sodium negatively correlated with the occurrence of repetitive and restricted behavior-one of the core ASD symptoms. This study identified potential links between ASD severity and RBC properties. While erythrocyte quality can influence ASD symptomatology, the observed relationships-such as those involving RBC deformability, NO production, Na,K-ATPase kinetics, and osmotic resistance-were not strong or consistent enough to be considered reliable diagnostic or prognostic biomarkers.
Read full abstract