The structures of the poly(methoxycarbonyl)cyclopentadienes C(5)H(6)(-)(n)()(CO(2)Me)(n)(), n = 5 (Cp-5), n = 4 (Cp-4), n = 3 (1, 2,4-; Cp-3) and n = 2 (1,2-; 1,2-Cp-2-I) were investigated. The X-ray diffractions of Cp-5 (known), Cp-4, and Cp-3 showed an enol of ester structure in the solid state. The enolic hydrogen forms a symmetrical hydrogen bond to a neighboring ester carbonyl, so that the vicinal "enolic" CO(2)Me groups in the 1, 2-C(=CO(2)Me)-C(CO(2)Me)(4) moiety are identical. The relevant X-ray parameters for the three enols are similar. The CP-MAS spectra of Cp-3-Cp-5 generally resemble their (13)C NMR spectra in CDCl(3) except for some differences of mostly <1 ppm. The (1)H, (13)C, and (17)O NMR spectra of Cp-3-Cp-5 in CDCl(3) are consistent with those of the hydrogen bonded enols. Most characteristic are the (1)H and (17)O signals of the OH groups at 19.7-20.1 and 221-225 ppm, respectively. Proton addition to sodium 1, 2-bis(methoxycarbonyl)cyclopentadienide gave a mixture of four 1, 2-bis(methoxycarbonyl)cyclopentadienes. The isomer (1,2-Cp-2-I) formed in 10-20% displays delta(O(1)H) at 19.3 ppm and is the enol analogue of Cp-5 whereas its main isomer (30-55%) (1,2-Cp-2-IV) has the ester structure. In CD(3)CN and DMSO-d(6) only one signal was observed at room temperature for each type of H, C, or O of Cp-5, suggesting a complete ionization to the symmetrical anion of Cp-5. In contrast, Cp-4 and Cp-3 in CD(3)CN at room temperature display OH signals in both (1)H and (17)O NMR spectra, and Cp-5 shows a broad OH signal in the (1)H spectrum at 240 K. The enol of ester structure is the main species, although exchange with the corresponding anion is possible. On standing in DMF-d(7) at room temperature, new signals are observed for Cp-3 and Cp-4. On raising the temperature in Cl(2)CDCDCl(2), Cp-3-Cp-5 show line broadening and appearance of new signals. These were ascribed to rearrangment and decomposition processes.
Read full abstract