Resonance tongues are mode-locking regions of parameter space in which stable periodic solutions occur; they commonly occur, for example, near Neimark–Sacker bifurcations. For piecewise-smooth, continuous maps these tongues typically have a distinctive lens-chain (or sausage) shape in two-parameter bifurcation diagrams. We give a symbolic description of a class of ‘rotational’ periodic solutions that display lens-chain structures for a general N-dimensional map. We then unfold the codimension-two, shrinking point bifurcation, where the tongues have zero width. A number of codimension-one bifurcation curves emanate from shrinking points and we determine those that form tongue boundaries.
Read full abstract