Potentiometric detection in complex biological fluids enables continuous electrolyte monitoring for personal healthcare; however, the commercialization of ion-selective electrode-based devices has been limited by the rapid loss of potential stability caused by electrode surface inactivation and biofouling. Here, we describe a simple multifunctional hybrid patch incorporating an Au nanoparticle/siloxene-based solid contact (SC) supported by a substrate made of laser-inscribed graphene on poly(dimethylsiloxane) for the noninvasive detection of sweat Na+ and K+. These SC nanocomposites prevent the formation of a water layer during ion-to-electron transfer, preserving 3 and 5 μV/h potential drift for the Na+ and K+ ion-selective electrodes, respectively, after 13 h of exposure. The lamellar structure of the siloxene sheets increases the SC area. In addition, the electroplated Au nanoparticles, which have a large surface area and excellent conductivity, further increased the electric double-layer capacitance at the interface between the ion-selective membranes and solid-state contacts, thus facilitating ion-to-electron transduction and ultimately improving the detection stability of Na+ and K+. Furthermore, the integrated temperature and electrocardiogram sensors in the flexible patch assist in monitoring body temperature and electrocardiogram signals, respectively. Featuring both electrochemical ion-selective and physical sensors, this patch offers immense potential for the self-monitoring of health.
Read full abstract