In contrast with flocks of birds, schools of fish and herds of animals, swarms of the non-biting midge Chironomus riparius do not possess global order and under quiescent conditions velocities are only weakly correlated at long distances. Without such order it is challenging to characterize the collective behaviours of the swarms which until now have only been evident in their coordinated responses to disturbances. Here I show that the positions of the midges in laboratory swarms are maximally anticorrelated. This novel form of long-range ordering has until now gone unnoticed in the literature on collective animal movements. Here, its occurrence is attributed to midges being, in nearly equal measure, attracted towards the centre of the swarm and repelled by one another. It is shown that the midge swarms are poised at the cusp of a stable-unstable phase transition.
Read full abstract