Catalysis plays a key role in the production of fuels, industrial chemicals and the chemical transformation of fine chemicals. As society faces increasing environmental pollution and energy crises, tandem catalysis has attracted increasing attention as an outstanding model due to its sustainability and environmental friendliness. Compared with traditional stepwise synthesis methods, tandem catalysis not only can couple several different reactions together, but also does not require the separation of intermediates, which provides new ideas for improving reaction activity, regulating product selectivity and developing new methods for catalysis. In order to catalyse cascade reactions efficiently, it is crucial to design suitable multifunctional catalysts, which should contain at least two active sites and achieve spatial separation. Here, we introduce the realisation and application of spatial segregation of metal, acidic and basic sites with examples to provide further insight into the indispensable role of active site compartmentalisation effects in tandem catalysis. In addition, this study highlights the challenges and issues associated with such catalysts, emphasising the importance of effective catalyst enhancement and environmentally sustainable catalytic transformations. The results of the study are intended to provide guidance for the development of rational and efficient catalysts.
Read full abstract