To fully tap into the potential of boron nitride nanotubes (BNNTs), addressing their inherent insolubility was imperative. In this study, a water-soluble polymer, poly(acrylic acid) (PAA), was employed as a surface-active reagent, using an accessible and scalable approach. The physical properties and structure of PAA-BNNT were meticulously confirmed through valuable characterization techniques, encompassing X-ray diffraction, scanning electron microscopy, Fourier-transform infrared, X-ray photoelectron spectroscopy, and thermogravimetric analysis. PAA-BNNT exhibited remarkable dispersion in water and demonstrated compatibility with the poly(vinyl alcohol) (PVA) matrix. When incorporating 30 wt % of PAA-BNNT (about 24.75 wt % net BNNT) into the PVA matrix, the thermal conductivity surged by over 21.7 times compared to pure PVA due to the uniform dispersion of high-concentration PAA-BNNT in the polymer matrix.
Read full abstract