Electrification of vehicles, hybrid aircraft and the advancement of portable electronics are exacting the deployment of high energy-dense batteries. The high theoretical capacity of sulfur (1675 mAh g−1), cost-effectiveness and environmental benignity of the lithium‑sulfur batteries (LSBs) are propitious for electrochemical energy storage beyond Li-ion battery technology. In this work, we described a simple, scalable preparation and electrochemical performance of porous activated carbon (PC)-infused graphitic carbon nitride (GCN) nanosheets with various ratios (PC@GCN 11, PC@GCN 12 and PC@GCN 21) as a polysulfide anchoring functionalized separator for LSBs. The high specific area (822 m2/g), hetero porosity, conductive carbon framework, surface functionalities and enriched N-doping of the PC@GCN synergistically induce mitigation of polysulfides via chemical and physical adsorption pathways in LSBs. The PC@GCN 21 modified separator demonstrates a high initial discharge capacity of 1389 mAh g−1 at a 0.1C rate and exhibits better capacity retention over 500 cycles at a 1C rate (655 mAh g−1) with sulfur loading of 3.8 mg/cm2 accompanied by high coulombic efficiency (94 %). The assembled cell with high S-loading (5.12 mg/cm2) shows a high initial discharge capacity of 712 mAh g−1 at 0.1C rate conditions. High Li-ion transference number (0.714), stable shuttle current, minimal coulombic efficiency loss (0.84 %), low shuttle factor and negligible self-discharge behaviour support the superior performance of the PC@GCN 21 coated cells. This report demonstrates that combining the high surface area, non-polar porous carbon with polar graphitic carbon nitride is a practical approach for designing metal-free functionalized separators for energy-dense LSBs.
Read full abstract