As a first step towards near-field Raman, we chose to study surface enhanced Raman scattering (SERS)-active substrates to cope with the weakness of Raman scattering (small cross-section and low concentration). We concentrated our work on localized surface plasmon (LSP) since they turned out to play a great part in SERS and we put forward the relation between LSP resonance and Raman enhancement. Roughness of our samples is controlled either by annealing process or electron-beam lithography (EBL); this latter technique proved to best suit to our study. Substrates are characterized by extinction spectroscopy which determines the LSP resonance and then Raman spectrum of a probe molecule, trans-1,2-bis(4-pyridyl)ethylene (BPE) is recorded. We show that maximum of enhancement is obtained when the LSP resonance is red-shifted (50 nm) compared to the excitation laser line (632.8 nm).
Read full abstract