A large-area vertical through-hole array in thin glass is rapidly fabricated by using femtosecond laser bursts assisted with chemical etching. By investigating the effects of the sub-pulse number and total pulse energy on the morphologies of the ablated microholes, as well as the effects of the chemical etching time and the concentration of HF acid solution on the morphologies of the through-holes, it is found that only under the condition that the upper surface of the glass microhole arrays is not ablated, but the exit is ablated by the femtosecond laser bursts with the increase of the sub-pulse number, a uniform and nearly vertical through-hole array can be obtained after etching in 5-wt% HF acid solution for 20 min. This single-step femtosecond laser bursts scanning method can significantly improve the fabrication efficiency of the ablated microhole arrays to about 18,000 microholes per second, which might provide a new technical guide for rapidly fabricating large-area vertical through-hole arrays in thin glass.
Read full abstract