The calcium-sensing receptor (CaSR), which regulates parathyroid hormone secretion by sensing serum calcium concentrations, has developed unique trafficking mechanisms to respond to constant exposure to its orthosteric ligand calcium. CaSR rapidly responds to fluctuations in serum calcium by driving forward trafficking of the receptor to cell surfaces in a mechanism known as agonist-driven insertional signaling (ADIS). This increase in CaSR at cell surfaces is counterbalanced by both constitutive and agonist-driven internalization of the receptor. Deciphering these mechanisms is important to understand how mutations in the CaSR and components of its signaling and trafficking pathways cause human disorders of calcium homeostasis.This chapter describes a protocol to measure CaSR ADIS and endocytosis in parallel using total internal reflection fluorescence (TIRF) microscopy. This utilizes a mammalian expression construct comprising the full-length human CaSR with an N-terminal bungarotoxin minimal-binding site that can be labeled with commercially available fluorescent ligands to measure endocytosis, and a super-ecliptic pHluorin (SEP) to measure total cell surface expression and exocytic events. This protocol could easily be adapted to simultaneously assess forward trafficking and endocytosis of other membrane proteins by TIRF microscopy.
Read full abstract