Xiaoyan Tuire Granule is a type of Chinese patent medicine that has been proven effective in treating respiratory tract infections. However, while it has been successfully introduced into clinical use, more knowledge is still needed regarding its chemical components and pharmacokinetics. This study investigated the chemical profile in the medicine and rat plasma by ultra high-performance liquid chromatography coupled with Q Exactive hybrid quadrupole-orbitrap high-resolution accurate mass spectrometry (UHPLC-Orbitrap-MS/MS). Subsequently, it developed a validated ultra high-performance liquid chromatography coupled with quadrupole mass spectrometry (UHPLC-MS/MS) method for determining five components in rat plasma after oral administration of Xiaoyan Tuire Granule. As a result, a total of 106 constituents were inferred, including 9 terpenoids, 29 flavonoids, 33 organic acids, 12 phenylpropanoids and 23 other compounds. After administration, 86 compounds were inferred in rat plasma, including 73 prototypes and 13 metabolites. The metabolic pathways were primarily hydrogenation, glucuronic acid conjugation, sulfate conjugation, hydrolysis and methylation. The established method determined the contents of esculetin, esculin, isovitexin, caffeic acid and p-coumaric acid had a good separation, and all the legal verification met the requirements. The pharmacokinetic results indicate that the absorption rate of the five compounds in vivo was rapid, with a Tmax of less than 0.25 h, and the elimination rate was also fast, with a half-time (T1/2) ranging from 1.22 h to 2.19 h. It is worth noting that esculin and esculetin have similar half-time in vivo due to their structural similarities. Among these five compounds, the AUC0-∞ and MRT0-∞ of p-coumaric acid and esculetin were relatively higher, indicating higher exposure and longer residence time of both compounds in vivo. In conclusion, this paper researched the chemical constituents and pharmacokinetics of Xiaoyan Tuire Granule, which provided the reference for further study.
Read full abstract