Magnetic porous carbon materials as peroxymonosulfate (PMS) activators for sulfadiazine degradation were derived from metal-organic frameworks (MOFs) grown in-situ on the cellulose of wood through the one-step pyrolysis method. The cellulose was obtained by treating wood powder with sodium chlorite to remove lignin, and Fe-MOFs (MIL-101(Fe)) nanoparticles were in-situ grown on the cellulose through hydrothermal reaction. The delignification of wood effectively enhanced the in-situ growth of MIL-101(Fe) on the wood tracheid skeleton, increased the specific surface area of magnetic porous carbon material (Fe@PC-50) after pyrolysis, and improved the performance of Fe@PC-50 as a PMS activator for the degradation of sulfadiazine. With the presence of 0.04 g L−1 Fe@PC-50 and 0.12 g L−1 PMS, the degradation percentage of sulfadiazine (20 mg L−1) could reach 100 % within 15 min, indicating excellent catalytic activity. Quenching tests and electron paramagnetic resonance (EPR) indicated that both free and non-free radicals played important roles in PMS activation. X-ray photoelectron spectroscopy (XPS) suggested that Fe0 and Fe3C were the possible important active sites for sulfadiazine degradation. This work offered an effective method to synthesize PMS activators from biomass/MOF materials for water treatment.
Read full abstract