Lilies are a high value cut flower typically producing 4–5 flowers per stem, but the opening of young buds of Oriental hybrid lilies is often affected in cut flowers. Commercial treatment includes harvesting of the stem when the oldest bud is closed and at turning colour, approximately 2 ds before it would open on the plant. Stems are then rehydrated, stored chilled for up to 72 h and transported dry. To understand the effect of commercial treatment onu the nutrient status metabolomes were compared throughout bud opening from different positions on the stem. At each developmental stage the metabolomic profile was affected by bud position and commercial treatment. Starch accumulated as long as buds remain closed; upon bud opening starch content declined. Reciprocally, sugar levels rose during flower opening and were affected by edge/ midrib location and commercial treatment. Glucose, fructose and sucrose levels remained higher in opened flowers still on the plant. AMY2 (amylase) transcript levels rose as did those of two sugar transporters (MST6 and SWEET7). Commercial processing therefore impacts on the metabolome and the ability to accumulate sugars in the opening flower bud. Commercial treatment delayed bud opening and the effect was dependent on the position of the bud on the stem. However, it had little impact on the rate of cell expansion during flower opening. Cell expansion in the different areas of the adaxial epidermis was unaffected by the commercial treatment. Furthermore, edge and adaxial tepal cells expanded faster during opening. Expression of cell expansion related genes (EXPA1 and LoPIP1) fell as flowers opened. This differential cell expansion in the tepal sectors could underpin the transition of a convex to a concave tepal shape during opening. In conclusion, commercial processing mainly affects the early stages of bud opening. Sugar and metabolite accumulation is compromised by commercial treatment, but this did not affect the capacity for cell expansion in the tepal. Furthermore, our data indicate that differential cell expansion in the different sectors of the tepals is important in lily flower opening, and that this is associated with starch breakdown and sugar accumulation.
Read full abstract