Symbiotic nitrogen fixation provides most of the nitrogen required for soybean growth. Rhizobial nodulation outer proteins (Nops) have been reported to influence host specificity during symbiosis establishment. However, the host proteins that interact with Nops remain unknown. In this study, we generated Sinorhizobium fredii HH103 mutants (HH103ΩNopL, HH103ΩNopT, and HH103ΩNopLΩNopT) and analysed the nodule number (NN) and nodule dry weight (NDW) of 12 soybean germplasms after inoculation with wild-type S. fredii HH103 or the mutant strains. The analysis of chromosome segment substitution lines revealed quantitative trait loci (QTLs) associated with NopL and NopT interactions. A total of 22 QTLs for the 2 nodule traits were detected and mapped to 12 different chromosomes in the soybean genome. Eight and fifteen QTLs were found to be associated with NN and NDW, respectively. Furthermore, 17 candidate genes were selected for further analyses. Considering the results of reverse-transcription quantitative PCR, we propose that the protein products of these 17 candidate genes interact with NopL and NopT.
Read full abstract