For a given dimension d $\ge$ 2 and a finite measure $\nu$ on (0, +$\infty$), we consider $\xi$ a Poisson point process on R d x (0, +$\infty$) with intensity measure dc $\otimes$ $\nu$ where dc denotes the Lebesgue measure on R d. We consider the Boolean model $\Sigma$ = $\cup$ (c,r)$\in$$\xi$ B(c, r) where B(c, r) denotes the open ball centered at c with radius r. For every x, y $\in$ R d we define T (x, y) as the minimum time needed to travel from x to y by a traveler that walks at speed 1 outside $\Sigma$ and at infinite speed inside $\Sigma$. By a standard application of Kingman sub-additive theorem, one easily shows that T (0, x) behaves like $\mu$ x when x goes to infinity, where $\mu$ is a constant named the time constant in classical first passage percolation. In this paper we investigate the regularity of $\mu$ as a function of the measure $\nu$ associated with the underlying Boolean model.
Read full abstract