This Letter features a new, scalable fabrication method and experimental characterization of glass-filled apertures exhibiting extraordinary transmission. These apertures are fabricated with sizes, aspect ratios, shapes, and side-wall profiles previously impossible to create. The fabrication method presented utilizes top-down lithography to etch silicon nanostructures. These nanostructures are oxidized to provide a transparent template for the deposition of a plasmonic metal. Gold is deposited around these structures, reflowed, and the surface is planarized. Finally, a window is etched through the substrate to provide optical access. Among the structures created and tested are apertures with height to diameter aspect ratios of 8:1, constructed with rectangular, square, cruciform, and coupled cross sections, with tunable polarization sensitivity and displaying unique properties based on their sculpted side-wall shape. Transmission data from these aperture arrays is collected and compared to examine the role of spacing, size, and shape on their overall spectral response. The structures this Letter describes can have a variety of novel applications from the creation of new types of light sources to massively multiplexed biosensors to subdiffraction limit imaging techniques.
Read full abstract