Paschke’s version of Stinespring’s theorem associates a Hilbert [Formula: see text]-module along with a generating vector to every completely positive map. Building on this, to every quantum dynamical semigroup (QDS) on a [Formula: see text]-algebra [Formula: see text] one may associate an inclusion system [Formula: see text] of Hilbert [Formula: see text]-[Formula: see text]-modules with a generating unit [Formula: see text]. Suppose [Formula: see text] is a von Neumann algebra, consider [Formula: see text], the von Neumann algebra of [Formula: see text] matrices with entries from [Formula: see text]. Suppose [Formula: see text] with [Formula: see text] is a QDS on [Formula: see text] which acts block-wise and let [Formula: see text] be the inclusion system associated to the diagonal QDS [Formula: see text] with the generating unit [Formula: see text] It is shown that there is a contractive (bilinear) morphism [Formula: see text] from [Formula: see text] to [Formula: see text] such that [Formula: see text] for all [Formula: see text] We also prove that any contractive morphism between inclusion systems of von Neumann [Formula: see text]-[Formula: see text]-modules can be lifted as a morphism between the product systems generated by them. We observe that the [Formula: see text]-dilation of a block quantum Markov semigroup (QMS) on a unital [Formula: see text]-algebra is again a semigroup of block maps.
Read full abstract