We consider operators T satisfying a sparse domination property |⟨Tf,g⟩|≤c∑Q∈S⟨f⟩p0,Q⟨g⟩q0′,Q|Q|\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned} |\\langle Tf,g\\rangle |\\le c\\sum _{Q\\in \\mathscr {S}}\\langle f\\rangle _{p_0,Q}\\langle g\\rangle _{q_0',Q}|Q| \\end{aligned}$$\\end{document}with averaging exponents 1le p_0<q_0le infty . We prove weighted strong type boundedness for p_0<p<q_0 and use new techniques to prove weighted weak type (p_0,p_0) boundedness with quantitative mixed A_1–A_infty estimates, generalizing results of Lerner, Ombrosi, and Pérez and Hytönen and Pérez. Even in the case p_0=1 we improve upon their results as we do not make use of a Hörmander condition of the operator T. Moreover, we also establish a dual weak type (q_0',q_0') estimate. In a last part, we give a result on the optimality of the weighted strong type bounds including those previously obtained by Bernicot, Frey, and Petermichl.
Read full abstract