Intense precipitation events pose growing threats to forest infrastructure causing flooding, and soil erosion and deposition, creating bottlenecks at road-stream crossing structures (RSCS). We describe a hillslope-scale ensemble hydro-geomorphological vulnerability assessment integrating geospatial Streambank Erosion Vulnerability Assessment (SBEVA), Modified Revised Soil Loss Equation (MRUSLE), and process-based Water Erosion Prediction Project (WEPP) model into an ensemble hydro-geomorphologic vulnerability index (EHVI) for USDA Forest Service (USFS) managed 194 road-culverts at the Hubbard Brook Experimental Forest (HBR-EF) in New Hampshire, USA. The results revealed that five and one culvert with diameters of 0.46m and 0.61m, respectively, have extreme EHVI values between 4 and 5, and fifteen and three culverts with diameters of 0.46m and 0.61m, respectively, have severe EHVI values between 3 and 4, some of which were previously identified as hydrologically vulnerable (undersized) to floods. This knowledge will inform USFS efforts to improve the resilience of the RSCS and protect aquatic habitats.
Read full abstract