Six streptomycin-dependent mutants of Bacillus subtilis, two of which were asporogenous, were isolated. All six mutants, SD1, SD2, SD6, SD7, SD9 and SD10, contained a single mutation causing streptomycin dependence and asporogeny, but four of these mutants (SD6, SD7, SD9, SD10) contained a second mutation which phenotypically suppressed the asporogenous character of the streptomycin dependence mutation. All six mutants grew more slowly than the wild type strain BR151, but those defective in sporulation grew the slowest. The streptomycin dependence mutations of SD9 and SD10B (a sporeplus transformant from SD10 carrying both the dependence mutation and the phenotypic suppressor) lie near or possibly within the strA locus. Ribosomes from SD9, SD10A (a spore-minus transformant from SD10 carrying only the dependence mutation), and SD10B were stimulated in vitro by concentrations of streptomycin that inhibit the activity of wild type strain BR151 ribosomes. The level of misreading as measured by poly(U)-directed isoleucine incorporation was greatly enhanced by streptomycin in wild type strain BR151 ribosomes, but misreading of mutant SD9, SD10A, and SD10B ribosomes, irrespective of the sporulation phenotype, was little affected by streptomycin. There were no apparent differences in the patterns obtained by two-dimensional polyacrylamide gel electrophoresis of the 70S ribosomal proteins of the mutants SD9, SD10A, SD10B, and wild type strain BS151.
Read full abstract