<para xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> In this paper, we consider the pairwise error probability (PEP) of a linear programming (LP) decoder for a general binary linear code as formulated by Feldman <etal/> (<emphasis emphasistype="boldital">IEEE Trans. Inf. Theory</emphasis>, Mar. 2005) on an independent (or memoryless) Rayleigh flat-fading channel with coherent detection and perfect channel state information (CSI) at the receiver. Let <emphasis emphasistype="italic"><formula formulatype="inline"> <tex Notation="TeX">${\bf H}$</tex></formula></emphasis> be a parity-check matrix of a binary linear code and consider LP decoding based on <emphasis emphasistype="italic"><formula formulatype="inline"><tex Notation="TeX">${\bf H}$</tex></formula></emphasis>. The output of the LP decoder is always a <emphasis emphasistype="boldital">pseudocodeword</emphasis>. We will show that the PEP of decoding to a pseudocodeword <emphasis emphasistype="italic"><formula formulatype="inline"> <tex Notation="TeX">${\mmb \omega}$</tex></formula></emphasis> when the all-zero codeword is transmitted on the above-mentioned channel, behaves asymptotically as <emphasis emphasistype="italic"><formula formulatype="inline"><tex Notation="TeX">$K({\mmb \omega}) \cdot (E_s/N_0)^{-\vert\chi({\mmb \omega})\vert}$</tex></formula></emphasis>, where <emphasis emphasistype="italic"><formula formulatype="inline"><tex Notation="TeX">$\chi({\mmb \omega})$</tex></formula></emphasis> is the support set of <emphasis emphasistype="italic"><formula formulatype="inline"><tex Notation="TeX">${\mmb \omega}$</tex></formula></emphasis>, i.e., the set of nonzero coordinates, <emphasis emphasistype="italic"><formula formulatype="inline"><tex Notation="TeX">$E_s/N_0$</tex></formula></emphasis> is the average signal-to-noise ratio (SNR), and <emphasis emphasistype="italic"><formula formulatype="inline"><tex Notation="TeX">$K({\mmb \omega})$</tex></formula></emphasis> is a constant independent of the SNR. Note that the support set <emphasis emphasistype="italic"><formula formulatype="inline"><tex Notation="TeX">$\chi({\mmb \omega})$</tex></formula></emphasis> of <emphasis emphasistype="italic"><formula formulatype="inline"><tex Notation="TeX">${\mmb \omega}$</tex></formula></emphasis> is a <emphasis emphasistype="italic">stopping set</emphasis>. Thus, the asymptotic decay rate of the error probability with the average SNR is determined by the size of the smallest nonempty stopping set in the Tanner graph of <emphasis emphasistype="italic"><formula formulatype="inline"> <tex Notation="TeX">${\bf H}$</tex></formula></emphasis>. As an example, we analyze the well-known <emphasis emphasistype="italic"><formula formulatype="inline"> <tex Notation="TeX">$(155,64)$</tex></formula></emphasis> Tanner code and present performance curves on the independent Rayleigh flat-fading channel. </para>
Read full abstract