We study the asymptotic behavior, uniform-in-time, of a nonlinear dynamical system under the combined effects of fast periodic sampling with period [Formula: see text] and small white noise of size [Formula: see text]. The dynamics depend on both the current and recent measurements of the state, and as such it is not Markovian. Our main results can be interpreted as Law of Large Numbers (LLN) and Central Limit Theorem (CLT) type results. LLN type result shows that the resulting stochastic process is close to an ordinary differential equation (ODE) uniformly in time as [Formula: see text] Further, in regards to CLT, we provide quantitative and uniform-in-time control of the fluctuations process. The interaction of the small parameters provides an additional drift term in the limiting fluctuations, which captures both the sampling and noise effects. As a consequence, we obtain a first-order perturbation expansion of the stochastic process along with time-independent estimates on the remainder. The zeroth- and first-order terms in the expansion are given by an ODE and SDE, respectively. Simulation studies that illustrate and supplement the theoretical results are also provided.
Read full abstract