Here we test the stochastic dynamic operator (SDO) as a new framework for describing physiological signal dynamics relative to spiking or stimulus events. The SDO is a natural extension of existing spike-triggered average (STA) or stimulus-triggered average techniques currently used in neural analysis. It extends the classic STA to cover state-dependent and probabilistic responses where STA may fail. In simulated data, SDO methods were more sensitive and specific than the STA for identifying state-dependent relationships. We have tested SDO analysis for interactions between electrophysiological recordings of spinal interneurons, single motor units, and aggregate muscle electromyograms (EMG) of major muscles in the spinal frog hindlimb. When predicting target signal behavior relative to spiking events, the SDO framework outperformed or matched classical spike-triggered averaging methods. SDO analysis permits more complicated spike-signal relationships to be captured, analyzed, and interpreted visually and intuitively. SDO methods can be applied at different scales of interest where spike-triggered averaging methods are currently employed, and beyond, from single neurons to gross motor behaviors. SDOs may be readily generated and analyzed using the provided SDO Analysis Toolkit We anticipate this method will be broadly useful for describing dynamical signal behavior and uncovering state-dependent relationships of stochastic signals relative to discrete event times.
Read full abstract