A coordinated strategy is proposed to prevent interference between trajectory tracking control and stability control in wheel-driven autonomous vehicles. A tire cornering stiffness estimate model is developed using the recursive least squares approach with a forgetting factor (FFRLS), resulting in precise estimation of tire cornering stiffness. An adaptive trajectory tracking control is developed, utilizing real-time updates of tire cornering stiffness; for the direct yaw moment required for stability control, an integral sliding-mode control is adopted, and the chatter problem of the integral sliding-mode controller is optimized by a fuzzy controller. The coordinated control of trajectory tracking and vehicle stability is ultimately attained through the application of the normalized stability index. The method’s practicality is validated by the hardware-in-the-loop simulation platform.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
1137 Articles
Published in last 50 years
Articles published on Estimation Of Stiffness
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
1096 Search results
Sort by Recency